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Abstract. In this paper a relation between the Camassa–Holm equation and the non-local
deformations of the sinh–Gordon equation is used to study some properties of the former equation.
We will show that cuspon and soliton solutions can be obtained from soliton solutions of the
deformed sinh–Gordon equation.

1. Introduction

The Camassa–Holm equation (CH)

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx (1)

appeared first in a physical context describing the shallow-water approximation in inviscous
hydrodynamics [1]. The variableu(x, t) represents the fluid velocity in the horizontal direction
x, andκ is a constant. Although first derived by Hamiltonian approximation methods, it can
also be obtained by using standard asymptotic methods [2], in the same way one obtains the
Korteweg–de Vries (KdV) or the Benjamin–Bona–Mahoney (BBM) equations [3]. Still from
the physical point of view it can be considered as a higher-order nonlinear generalization of
the BBM equation, which is obtained when the right-hand side of equation (1) is dropped.
Much of the interest in this equation comes from two remarkable facts: (a) it is a completely
integrable equation [1, 4], consequently allowing the use of many peculiar properties of these
systems [5, 6]; (b) it possesses peaked solitary-wave solutions (termed peakons) in the limit
κ → 0. Peakons are solutions presenting a finite discontinuity in its first derivative, such as
the solution found in [1]:

u(x, t) = c exp(−|x − ct |) (2)

wherec is an arbitrary constant. Further studies led to new solutions such as the billiard
solutions [7] and the cuspon solutions [8–10] (solutions with the first derivative going to
infinity at a given point [11]). Also the term withκ can be set to zero in equation (1) through
the mapu→ u− κ, x → x +κt . This equation withκ 6= 0 has essentially different classes of
solutions, which vanish at infinity than withκ = 0: peakons ifκ = 0 and cuspons otherwise.

In the derivation of the CH equation in shallow-water theory, the constantκ is given in
terms of the physical variablesg andh0, the acceleration of gravity and the undisturbed depth
by κ2 = gh0. It is clear thatκ = 0 is a non-physical case, at least in normal gravity conditions
(under microgravity conditions surface-tension effects have to be taken into account, and this
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has not be done in the present case). It is thus of general interest to study the solutions of the
CH equation withκ 6= 0.

In this paper we concentrate on the investigation of the CH equation by making use of
its relation with the deformed sinh–Gordon equation (see below) [12]. This equation is a
completely integrable one, and a transformation between these equations allows us to produce
new solutions for one of them, given the solutions of the other. This relation is based on
the hodograph transformation and becomes evident if the∂̄-dressing [13–15] procedure for
the CH is taken into the consideration [10]. This becomes possible due to the modification
of the dressing procedure given in [16, 17]. We will show that this relation is described in
terms of the solutions of an ordinary differential equation which, in particular cases, reduces
to a (transcendental) algebraic equation. We will first give a purely algebraic approach to this
transformation, not involving thē∂-problem in section 2. Next, using results on the relation
between thē∂-problems for CH and the deformed sinh–Gordon equations given in the appendix
we will investigate the solutions of the CH equation originating from the one-soliton solution of
the deformed sinh–Gordon equation. The general feature here is that each solution is mapped
into a family of solutions of the CH equation. Elements of this family involve solutions with
a local real extremum. This extremum can be of the cuspon type or of the soliton type, i.e. the
space derivatives of these solutions tend to infinity or equal zero in the extremal points. This
will be discussed in section 3. As a next step, we will analyse some interesting examples, when
the local cuspon and soliton solutions become global solutions, i.e. determined and bounded
for all values of the independent parametersx andt , but we will show that this happenseither
for the soliton solution or for the cuspon solution in given family. We will give examples
of explicit one-cuspon and one-soliton solutions and will comment on multi-soliton (cuspon)
solutions. The paper closes with an appendix consisting of a series of results on∂̄-problems
for CH and the deformed sinh–Gordon equations.

2. Transformation between CH and the deformed sinh–Gordon equation

In what follows it will be more convenient to work with the CH equation written in the following
form:

uxxt − a2ut + 4ux − uuxxx + 3a2uux − 2uxuxx = 0 a = constant (3)

which is a transformed from of equation (1). To be explicit, the transformation of equation (3)
to (1) is given by the following:

a→ 1 u→ 2

κ
u t →−κ

2
t

for the caseκ 6= 0 which is considered here.
We will show that there exists a transformation relating equation (3) to the deformed

sinh–Gordon equation given by
1
2χTX − c1eχ − c2e−χ − c3

(
∂−1
X

(
eχ
)
∂−1
X

(
e−χ

))
X
= 0 (4)

whereck (k = 1, 2, 3) are arbitrary constants.
As both equations are integrable by the inverse scattering transform, they can be given

as solvability conditions for linear overdetermined systems of equations. We will give the
transformation between equations (3) and (4) by relating their associated linear systems.

The linear overdetermined system for equation (4) has the form [12]

9aXX − U29aX −
1

�
9a = 0 (5)

9aT + V�9aX +W9a = 0 (6)
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where� is a constant parameter. It easy to check that the compatibility condition of this system
is the nonlinear system of equations for the variablesU2, V andW ,

2WX +U2T = 0 (7)

(VX + VU2)X = 0 (8)

WXX − U2WX + 2VX = 0. (9)

This system can be easily reduced to equation (4) by taking

χX = U2 (10)

and integrating equation (7)–(9) with respect to theX variable, thus obtaining

W = − 1
2χT + c(T ) (11)

V = c3(T )∂
−1
X

(
eχ
)

e−χ + c2(T ) e−χ (12)

WX = −2∂−1
X

(
VXe−χ

)
eχ − c1eχ (13)

where equation (11) has already been used in equations (12) and (13). Substituting
equation (12) into (13) and using equation (11), gives (4) whenck (k = 1, 2, 3) are constants.

To go over to the linear problem for the CH let us introduce a hodograph transformation
by means of the new independent variables (x, t) through

X = 8(x, t) T = t (14)

where8 is an arbitrary function of its arguments. In these variables the system (5) and (6)
takes the form

9axx − Ũ29ax −
Ũ1

�
9a = 0 (15)

9at − (u− Ṽ �)9ax + W̃9a = 0 (16)

where

u = 8t

8x

Ṽ = V (8x)
−1 W̃ = W

Ũ1 = (8x)
2 Ũ2 = U28x +

8xx

8x

.

(17)

Now, as the linear system given by equations (5) and (6) implies a compatibility condition, a
corresponding compatibility condition for the transformed system will emerge, which is given
by

Ṽxx + (Ũ2Ṽ )x = 0 (18)

−uxx + 2W̃x + Ũ2t − (Ũ2u)x = 0 (19)

W̃xx − Ũ2W̃x + Ṽ Ũ1x + 2ṼxŨ1 = 0 (20)

Ũ1t − uŨ1x − 2uxŨ1 = 0. (21)

Alternatively, this equation could be obtained by substitution of the hodograph
transformation (14) directly into equations (7)–(9). We notice that in view of equations (17),
the last equation above, equation (21) is an identity. However, preciselythisequation will play
an important role in the derivation of CH.

Because there are more potentials in equations (18)–(21) than the number of equations,
anysolvablereduction can be put on this system. We consider this new reduction as equation
defining the function8 (which remained arbitrary up to now). The simplest equation

Ṽ = 1 (22)
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leads to the CH, equation (3) for the potentialu simply after substitution ofŨ1 from
equations (18)–(20) into (21). In view of (22), the overdetermined linear system (15) and
(16) takes the form

9axx − a9ax +
m− 2

2�
9a = 0 m = uxx − a2u (23)

9at − (u−�)9ax + 1
2(ux + au)9a = 0. (24)

This form of the linear system is more suitable for our consideration and can be reduced to
that introduced in [1] by a simple transformation,9a → 9a exp(ax/2− a�t/2).

Note that equation (22) is an algebraic one for the function8, due to the hodograph
transformation (14), once the functionV (X, T ) is known. However, the relation between
functionV and the solutionχ is a differential one. To clarify the structure of equation (22)
and its relation with the solutionχ of equation (4), let us integrate equation (18) by taking into
account equation (22). One obtains thatŨ2 is an arbitrary function oft . We take this function
to be constant to obtain equation (3) with the constant coefficients

Ũ2 = a = constant.

Then, the first and the last equations of the system (17) give the differential relation
between the functionsχ andu:

u = 8t

8x

(25)

a = U28x +
8xx

8x

. (26)

Note that the functionU2 in these equations depends on(x, t) due to equation (14), but the
relation withχ is given by equation (10) in terms of the variables (X, T ). We can integrate
equation (26) inx, obtaining

ln(8x) + χ = ax + d(t) (27)

whered is an arbitrary function oft , andχ is a function ofX = 8(x, t) andT = t . We
thus have anordinary differential equation for the unknown function8, which is related to
the solutions of CH by equation (25). The time dependence of8 is determined by the time
dependence of the solutionχ .

Thus we have shown that any given solution of the deformed sinh–Gordon equation (4)
gives rise to afamily of solutions of CH equations through relations (14), (25) and (27).
However, the reverse procedure (obtaining the solutions of the deformed sinh–Gordon equation
through the CH equation) is much more complicated, because one needs to find the function
8 through integration of equation (25).

However, it will turn out that many interesting solutions of CH, like the ones considered
in section 3, do not originate from solitonic solutions of equation (4). At this point we have
to resort to a transformation operating on equation (4), in fact, a Miura-type transformation,
which takes equation (4) to an equivalent one. This is done by eliminating the parameter�

from equations (5) and (6) and by using the gauge transformation

9a = H9 2
Hx

H
− U2 = −a.

The system (5) and (6) results in a system for9 given by

9XT − A9T − v9 = 0 (28)

9XX − a9X − 2∂−1
T vX9 − 1

�
9 = 0 (29)
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with

A = U2

2
+
VX

V
+
a

2
(30)

vX = 1
4

(
1
2χ

2
X − χXX

)
T
. (31)

The compatibility condition for this system is

(vX − 2Av + av)X = 0 AX +A2 − aA− 2∂−1
T uX = 0. (32)

Defining now

ξ = ln(v) (33)

we obtain the new version of the deformed sinh–Gordon equation:

1
2ξXT − C1eξ − C2e−ξ +C3e−ξ ∂−1

X

(
e−ξ

)
T
= 0 (34)

whereCk are constants, which appear after integrating the system (32).
This equation is also an integrable one. Soliton solutions for equation (34) will give rise

to non-soliton solutions of equation (4), but exactly those that generate the cuspon solutions of
CH. One could, of course, have discarded equation (4) from the beginning, but this would be,
at least, counter-intuitive, as the relation between CH and equation (4) is quite a direct one. In
order, however, to have a better understanding of the interplay between the two versions of the
deformed sinh–Gordon and the CH equation, we will turn to the associated∂̄-problems [10, 12].
An adaptation of these methods will also give the∂̄-problem associated with equation (4). This
last point, together with details of thē∂-problems associated with CH and equation (34) are
collected in an appendix.

3. Solutions of CH obtained from the soliton solutions of the deformed sinh–Gordon
equation

3.1. General results

The results of the previous section show that every solution of the sinh–Gordon-type
equation (4) gives rise to a family of solutions of the CH equation, (3), due to the relations
(14), (25) and (27). The number of solutions in each of these families equals the number
of independent solutions of equation (27). In a general situation, this last equation cannot
be solved analytically. Further, for each family, the question about real solutions should be
studied separately. It turns out that many simplifications arise when we consider solutions
obtained through thē∂-problem for equation (34). In this case, equation (27) can be replaced
by analgebraicone, namely equation (A26). More details of this approach are given in the
appendix. In what follows, we will refer to results obtained there.

Let us consider the class of the solitary wave solutions of equation (3) which is related to
soliton solutions of equation (34). We will give some general results before turning to specific
examples.

First of all, we will consider the one-soliton solution of equation (34). Even in this simple
case, a large variety of solutions of equation (3) can be obtained, among which are the cuspons
and ordinary solitons. Other solutions are not bounded at infinity. The existence of such
a variety of solutions is related to the fact that equation (A26) defines both the form of the
solution and the number of independent solutions in each family. This is closely related to the
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arbitrary constantsb, p in equation (A35). A further simplification sets in here. The algebraic
equation (A26) is now, in the one-soliton case, of the form (see equations (A37) and (A39))

ac(γ − 1)2(a − 2aγ − pχ)χ1/(2γ−1)eaη − pγ 2χ − a(2γ − 1)(γ − 1)2 = 0 (35)

χ = exp

[
a(2γ − 1)8 +

2γ − 1

aγ (γ − 1)
t

]
(36)

whereγ = b/a, β = 1/a2γ (1− γ ) andη = x +βt . The solution of CH equationu is related
to χ by the equation

u = β
(

1 +a(2γ − 1)
χ

χη

)
(37)

which follows from equations (25) and (35). In the following considerations, we assume that
γ 6= 1 or 0 (otherwise an irregularity appears in equations (35) and (36)) andγ 6= 1

2 (otherwise
thet dependence disappears from the solutionu).

In view of (35), the solutionu given by equation (37), can be represented in the following
form:

u = (1− 2γ )3pχ

aγ (γ − 1)(2γ a − a + pχ)(−a + 4aγ − 5aγ 2 + 2aγ 3 + γ 2pχ)
(38)

which will be more convenient for our investigations. It is useful to keep in mind that the map
χ ↔ η is not reciprocal, so thatχ in the right-hand side of equation (38) represents the family
of solutions of the algebraic equation (35) related to the given values of the constantsγ andp.

We now proceed to the investigation of theη dependence of the solutionu implicitly by
using equations (35) and (38), and keeping in mind that we are interested in the real solutions
of CH. Note that we cannot guarantee the existence of the real solutions on the wholeη-axis,
−∞ < η < +∞ (we call these solutionsglobalones). Moreover, the real solutions, localized
in the neighbourhood of a given pointηk do not necessary belong toany fixed global solution
of CH. So, the conclusions to be drawn are correct, generally speaking, only locally around
the given pointηk. Some simple examples of the global bounded real solutions will be given
below.

First of all, note that equation (38) implies thatu can be equal to zero only atχ = 0 or
χ → ∞. From equation (35) it follows thatη → ±∞ asχ → 0,∞. This means that any
real solutionu (no matter whether it is a local or global one) of equations (3) has the same sign
for all of the region where this solution is defined ((−∞,+∞) for the global solution). This
fact is of major importance in the construction of global solutions.

Let us obtain the derivativeuη by differentiating equation (38) and taking into account
equation (35):

uη = (2γ − 1)4pχ(a − 3aγ + 2aγ 2 + pγχ)

γ (γ − 1)(2aγ − a + pχ)(a − 3aγ + 2aγ 2 − γpχ)
×(−a + 4aγ − 5aγ 2 + 2aγ 3 + γ 2pχ)−1. (39)

Now consider the pointsχk for which this derivative equals zero or tends to infinity. In this way,
we define the points where the derivative changes sign (i.e. the extremal points). Of course,
these points are not necessarily situated on the same curveχ , which is a fixed global solution
of equation (3). Generally speaking, they are actually not situated on the global solutions at
all.

From this last equation, we can see that the derivativeuη equals zero at three points:
χ1→∞, χ2, χ3:

χ1→∞ χ2 = 0 χ3 = a

γp
(−1 + 3γ − 2γ 2). (40)
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In three other points, it tends to infinity:

χ4 = a

p
(1− 2γ ) χ5 = a

γp
(1− 3γ + 2γ 2) = −χ3 (41)

χ6 = a

γ 2p
(1− 2γ )(γ − 1)2. (42)

Two points,χ3 andχ5, have a significant meaning, because they correspond to soliton and
cuspon solutions, respectively. The other points describe the asymptotic behaviour of solutions
atη→ ±∞. This will become clear below. The soliton and cuspon are localized around the
pointsη3 andη5 (0 = 1/(1− 2γ ))

exp(aη3) = γ

ac(γ − 1)

(
a

γp
((2γ − 1)(1− γ ))

)0
(43)

exp(aη5) = (−1)0+1 exp(aη3). (44)

To see this, note that around these points the solutionu is represented by series, which can be
constructed by expanding equations (35) and (38) in the neighbourhood of the corresponding
pointsηk, χk (uk ≡ u|η→ηk )

u3 = (2γ − 1)2

a2γ (1− γ ) −
(2γ − 1)4

16γ 2(γ − 1)2
(η − η3)

2 + · · · (45)

u5 = 1

a2γ (1− γ ) +

(
3

a2γ (γ − 1)

)2/3

(η − η5)
2/3 + · · · . (46)

From equation (44) it follows that

(a) uη|η→η5 ∼ 1/(η − η5)
1/3 and

uη →
{

+∞ as η→ η5 + 0

−∞ as η→ η5− 0.

This corresponds to what is defined as a cuspon, that is, a solution with the first derivative
going to infinity at a given point.

(b) Cuspon and soliton solutions always move in opposite directions, due to the definition of
the velocityβ. The cuspon amplitude is equal to its velocity.

Let us now write down the asymptotics at pointsχ1, χ2, χ4 andχ6. This will enhance
our understanding of the meaning of these points, and further will take us to some results
concerning global real solutions. We have

exp(aη1)→− γ 2

ac(γ − 1)2
χ0 | exp(aη1)| →

{
0 if 2γ > 1

∞ if 2γ < 1
(47)

exp(aη2)→− 1

ac
χ0 | exp(aη2)| →

{
0 if 2γ < 1

∞ if 2γ > 1
(48)

exp(aη4)→ (2γ − 1)2

pc(γ − 1)2

(
a

p
(1− 2γ )

)0
(χ − χ4)

−1 | exp(aη4)| → ∞ (49)

exp(aη6)→− pγ 4

ca(2γ − 1)2(γ − 1)2

(
a

pγ 2
(1− 2γ )(γ − 1)2

)0
(χ − χ6)

| exp(aη6)| → 0

(50)
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and

u1→ (1− 2γ )3

aγ 3p(γ − 1)

(
−ac (γ − 1)2

γ 2
exp(aη)

)−1/0

aη→
{
−∞ if 2γ > 1

+∞ if 2γ < 1

(51)

u2→ p(1− 2γ )

a3γ (γ − 1)3
(−ac exp(aη))1/0 aη→

{
−∞ if 2γ < 1

+∞ if 2γ > 1
(52)

u4→ c

aγ
(1− γ )

(
a

p
(1− 2γ )

)−0
exp(aη) aη→ +∞ (53)

u6→ γ

ca3(1− γ )
(
a

γ 2p
(1− 2γ )(γ − 1)2

)0
exp(−aη) aη→−∞. (54)

Sou decreases or increases exponentially whenη→±∞.
We now formulate some conclusions, which can be drawn from equations (40)–(54).

These conclusions (if not specifically stated) are valid for both local and global solutions. It
should be kept in mind that they concern only solutions of CH obtainable from one-soliton
solutions of equation (34).

(a) From expressions (47)–(54) it follows that a real solutionu may tend to infinity only at
η → ±∞ according to (53) and (54). They also can vanish exponentially at infinity
according to (51) and (52).

(b) Any given real solution can have no more then one extremum either at the pointη3 (ordinary
soliton) or atη5 (cuspon). In fact, in order have both extrema we would needη3 = η5 due
to equation (44). However,u3(η3) 6= u5(η5) in view of (45) and (46).

(c) From the expansions (45) and (46) it follows that the functionu, which belongs to the
given family of solutions, has maximum (or minimum) at the pointsη3 (or η5).

(d) From equation (38) it follows thatu can be equal to zero only at the pointsη ±∞. This
means that any real solution cannot change sign over the entire region of its definition
(∞ < η < +∞, for global solutions).

(e) As far as the solution cannot change sign, the ordinaryglobal soliton and cuspon vanish
exponentially as|η| → ∞ in accordance with (51) and (52) ifu3(η3) > 0 (orγ (1−γ ) > 0,
positive amplitude) andu5(η5) < 0 (orγ (1− γ ) < 0, negative amplitude), respectively.
Otherwise these solutions tend to infinity (also exponentially) according to equations (53)
and (54) as|η| → ∞. The conditionsu3(η3) > 0 andu5(η5) < 0 are the first necessary
conditions for the existence of bounded global solitons and cuspons. It follows that the
global soliton and global cuspon cannot be found in the same family of CH solutions,
characterized by the given value of the real parameterγ . However, local soliton and
cuspon solutions can both be found in the same family.

(f) The second necessary local condition for the existence of global real cuspon or soliton
solutions, corresponding to the given constantγ , is given by equations (43) and (44).
Namely, the right-hand side of these equation must be positive or equal to zero. This
condition is not such a strong one, as it can always be satisfied for a cuspon or soliton (but
not for both of them simultaneously) by the appropriate chose of the constantsp andc in
these formulae. One should remember that both of these local conditions do not guarantee
the existence of global cuspons and solitons in the given family of solutions.
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3.2. Examples

It is clear from equation (35) that the factorγ = b/a determines the general structure of
this equation. As has been pointed out above, there are simple examples when equation (35)
is exactly solvable without numerical calculations. We will describe two such cases. In the
first one, equation (35) leads to the equation of the third power (on the functionsχ (ordinary
soliton) orφ: χ = φ2 (cuspon)). In the second case, equation (35) is of the fourth power in
the functionsχ orφ;χ = φ3. Neither a global soliton nor a cuspon exist in this case, because
this equation does not possess real solutions. Only the necessary local conditions for soliton(
γ = 1

3,
2
3

)
and cuspon (γ = −1, 2) existence are fulfilled (see the previous paragraph).

Accordingly, we will consider only the first case. Both the ordinary soliton solution and
cuspon solution exist in this situation. The ordinary soliton corresponds to the factorγ = 3

4

or 1
4, and is described by equation (37)

usol± = 16

3a2

(
1∓ a

2

χ±
χ±η

)
(55)

with

χ± = 2 cos(h± − π/3)
cos(3h±)

− 1 h± = 1
3 arctan(exp(±aη/2)) η = x +

16

3a2
t.

The upper and lower signs ‘+’ and ‘−’ correspond toγ = 1
4 andγ = 3

4, respectively. There
would, in principle, exist two soliton solutions but it can be easily shown that

usol+ ≡ usol− ≡ usol

= 16

3a2

(
1− 3(

√
3 + 2 sin(2h))

(1 + 2 cos(2h))(2
√

3 cos(2h)−√3 cos(4h) + 2 sin(2h) + sin(4h))

)
(56)

h ≡ h+.

For the cuspon solution (γ = − 1
2,

3
2) we represent equation (37) in a slightly different

form in accordance with (36)

ucusp± = − 4

3a2

(
1∓ a φ±

φ±η

)
χ± = φ2

± (57)

where

φ± = z± + ((z± − 1)(z± + 1)2)1/3 + ((z± − 1)2(z± + 1))1/3

z± = exp(±aη) η = x − 4

3a2
t

(58)

the upper and lower signs ‘+’ and ‘−’ correspond toγ = − 1
2 andγ = 3

2, respectively. As
well as in the soliton case, one can prove [10]) that

ucusp+ ≡ ucusp− ≡ ucusp
= − 16

3a2

3eη/2
(
(− sinh(η/2) cosh(η/2)2)1/3 + (sinh(η/2)2 cosh(η/2))1/3

)
+ 1

12e−η
(−(sinh(η/2) cosh(η/2)2)1/3 + (sinh(η/2)2 cosh(η/2))1/3 + e−η/2/2

)2
+ 1
.

(59)

In all of these solutions the parametersc andp (see equations (A26) and (A35)) are taken such
that the solitons and cuspons have an extremum at the pointη = 0:

usol|η=0 = 4

3a2
ucusp|η=0 = − 4

3a2
.
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Note that the families of solutions represented byγ = 1
4 and3

4 (byγ = − 1
2 and3

2) involve
the unbounded cuspon with a positive minimum (a soliton with a negative maximum) at the
pointη = 0. We will not write down these solutions here.

A thorough analysis should involve the numerical investigation of equation (35) for various
values of the constantsγ and will be done elsewhere.

3.3. Multi-cuspon solutions

Here we give some features of the solutions of the CH which are related to the multi-soliton
solution of the deformed sinh–Gordon equation (34). As is shown in the appendix, this
solution is related to the kernelR0 of the form (A34). Our consideration is based on the fact
that each soliton of the multi-soliton solution of the deformed sinh–Gordon equation has its
own velocity. So on a large time scale all solitons will be separated from one another and
will propagate with negligible interaction, and one can consider the transformation (14), (25)
and (27) (or (A26), (A32) and (A33)) between equations (3) and (34) separately for each
soliton. This can be done due to the fact that both single solitons of equation (34) and bounded
solitary-wave solutions of the CH tend to zero at infinity. This can be understood on the basis
of the analysis of equations (A26), (A32) and (A33) which can be done without obstacles.
Unfortunately, we cannot give an explicit formula for the multi-solitary-wave solution of CH
because equation (A26) becomes too complicated in this case. Even in the case of the simplest
two-solitary wave solution these equations leads to a polynomial equation of fifth degree.

According to the previous paragraph the multi-soliton solution of equation (34) is mapped
by equations (A32) and (A33) into the family of solutions of CH which involves either a pure
multi-cuspon solution or pure multi-soliton solutions or mixed multi-cuspon/multi-soliton
solutions where each single cuspon has negative amplitude while each soliton has a positive
one.
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Appendix. The ∂̄ problems for the CH and deformed sinh–Gordon equations

In this appendix we will obtain the relations given in section 2 by using the∂̄-problem.
The ∂̄ -problems for equations (3) and (34) have been introduced in [10, 12]. First of all,

we recall some important facts obtained in [12]. We then show that the∂̄-problem for CH
immediately follows from these results and we will demonstrate that equation (4) can also be
treated in a similar way.

The deformations of the sinh–Gordon equation (34) and (4) are integrated with the help
of the integral equation (non-local∂̄-problem),

ϕ(λ;X, T ) = η(λ) +
1

2π i

∫
dν ∧ dν̄

ν − λ
∫
ϕ(µ;X, T )R(µ, ν;X, T )dµ ∧ dµ̄ (A1)

where the kernelR is of the form

R(µ, λ; x, t) = R0(µ, λ)eK(µ;X,T )−K(λ;X,T ) K(λ;X, T ) = λX +
γ T

λ
(A2)

with a an arbitrary real point on the complex plane,a 6= 0 (the samea is used in equation (3)).
The normalization functionη should be equal to 1 or 1/(λ−a) in order to obtain equations (34)



Camassa–Holm equation 4743

or (4), respectively (recall that it was shown that these equations are related by the Miura-type
transformation (31) and (33)). In addition, the following reduction is imposed onR:

R(µ, λ)(�(µ)−�(λ)) = 0 �(λ) = 1

λ(λ− a) . (A3)

The last statement means that the kernelR0 is of the form

R0(ν, µ) = r0(ν, µ)(δ(µ− ν) + δ(µ + ν − a)) (A4)

whereδ is the Dirac delta function (
∫
δ(λ) d2λ = −2i, i2 = −1). The only requirement on

the functionr0 is that equation (A1) is uniquely solvable.
We remind some points of [12] where equation (34) had been derived. As was mentioned

above, this equation is related to the solutionϕ = ψ of equation (A1), normalized withη = 1.
The solutionξ is expressed through the residue of the functionψ(λ) at infinity

ψ → 1 +
ψ1

λ
+ · · · as λ→∞

by the formula

ψ1T + 1= eξ . (A5)

In terms of the functionψ the potentialsAandv of the linear system (28) and (29) are expressed
by the following relations:

A = ψX(0)

ψ(0)
ψ(0) = ψ(λ)|λ=0 v = ψ1T + 1 (A6)

(we are using the designations of [12]).
We are more closely interested in the deformation (4) which results from the solution of

the∂̄-problemϕ = ψa with the normalizationη = 1/(λ− a), because the dressing procedure
for CH is based on it. We write down this̄∂-equation because it will be important in what
follows:

ψa(λ;X, T ) = 1

λ− a +
1

2π i

∫
dν ∧ dν̄

ν − λ
∫
ψa(µ;X, T )R(µ, ν;X, T )dµ ∧ dµ̄. (A7)

We also give two asymptotics of the solutionψa:

ψa → ψa1

λ
+ · · · as λ→∞. (A8)

ψa → 1

λ− a +ψa1(a) + · · · as λ→ a. (A9)

Now we can derive the second deformation of the sinh–Gordon equation (4). The detailed
∂̄-approach for the construction of the integrable nonlinear partial differential equations (PDEs)
is given in [14, 15]. Here we give two general points on which the succeeding consideration
is based.

(a) If the functionϕ is the solution of equation (A1) with given kernelR of the form (A2)
and (A3) and some normalizationη, then the function

Mϕ ≡
∑
j

uj (X, T )�
ljD

mj
X D

nj
T ϕ DX = ∂X + λ DT = ∂T +

1

λ
(A10)

(wherelj , mj , nj are integers, andu is an arbitrary function of its arguments) is the solution
of equation (A1) with the same kernelR and some different normalization. If one has
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two different solutionsϕ1, ϕ2 of equation (A1) with the same kernelR and different
normalization, then the function

Miϕ1 +Mjϕ2 i, j ∈ Z (A11)

is the solution of the same equation with a new normalization (here operatorsMi ,Mj are
both of the form (A10)).

(b) There exist operators̃Mk (k = 1, 2, . . .) of the form (A10), such that the functions̃Mkϕ

and/orM̃iϕ1 + M̃jϕ2 are solutions of equation (A1) with zero normalization. Then, in
view of the uniqueness of the solution of the integral equation (A1), one has

M̃kϕ = 0 and/or M̃iϕ1 + M̃jϕ2 = 0 (A12)

for somei, j, k.
We now have two different ways to construct the nonlinear PDEs:

1. due to the structure of the operatorM̃k, equations (A12) are actually an overdetermined
system of linear equations on the functionsϕ, ϕ1, ϕ2, with variable potentials.
Its compatibility condition produces the nonlinear system of equations for these
potentials;

2. the nonlinear PDE follows immediately from the non-trivial terms of the expansions
of equations (A12) in powers of the small parametersεk, k = 0, 1, 2,

ε0 = (1/λ)|λ→∞ ε1 = λ|λ→0 ε2 = (λ− a)|λ→a (A13)

wherea is the singularity of the operator� (A3).

We will choose the second way.

In the situation under considerationϕ ≡ ψa, and one can construct the following
overdetermined linear system of differential equations:

M1ψa ≡ DXXψa − 1

�
ψa − Ū2DXψa +U3ψa = 0 (A14)

M2ψa ≡ DTψa + V�DXψa − aV�ψa +Wψa = 0 (A15)

where

V −1 = − 1

ψa(0)

(
ψa(0)− ψaX(0)

a

)
W = −1

a
(1 +Vψa1X(a) + V )

Ū2 = 1

ψa1
(2ψa1X + aψa1)

U3 = aŪ2 − a2.

The examination of the first non-trivial terms in the expansions of equation (A14) in powers
of the small parametersε1, ε2 and equation (A15) in powers of the parameterε0, results in the
following nonlinear equation on the functionχ :

1
2χT − a∂−1

X

(
eχ
)
∂−1
X

(
e−χ

)− c1∂
−1
X eχ − c2∂

−1
X e−χ = 1− c1c2

a

∂X(χ) = Ū2 − 2a = 2
ψa1X

ψa1
− a

(A16)

(compare with (4)). Of course, the solutionsψ andψa are not independent, but related by the
differential equation (see (A11) and (A12)):

ψaX + λψa = ψa1ψ + aψa (A17)



Camassa–Holm equation 4745

whose expansion in terms of the parameterε0 leads to the Miura-type transformations (31) and
(33) (with χ → −χ , because of the symmetry of the system (5) and (6) with respect to the
changeU2 → −U2, x → −x, V → −V ) between solutions of the nonlinear equations (34)
and (4).

Now we are going over to thē∂-problem for CH (3). Here we give a slightly different
formulation of this problem in comparison with that given in [10]. This reformulation is more
suitable for our consideration and does not affect the final results.

To begin with, let us go to the parameters (x, t) through equation (14), where8 is an
arbitrary function of its arguments. We write down the overdetermined linear system for the
functionψa which immediately follows from thē∂-problem (A2), (A3) and (A7) which can
also be obtained from the system (A14) and (A15) by means of the transformation (14),

Dxxψa − Ũ1

�
ψa − ˜̄U2Dxψa + Ũ3ψa = 0 (A18)

Dtψa − uDxψa + Ṽ �Dxψa − aṼ 8x�ψa + W̃ψa = 0 (A19)

where

u = 8t

8x

(A20)

Ṽ −1 = − 1

ψa(0)

(
8xψa(0)− ψax(0)

a

)
(A21)

W̃ = −1

a
(1 + Ṽ ψa1x(a) + Ṽ 8x) (A22)

Ũ1 = 82
x (A23)

˜̄U2 = 1

8xψa1
(8xxψa1 + 28xψa1x + aŨ1ψa1) (A24)

Ũ3 = aŨ28x − a2Ũ1− a8xx. (A25)

This overdetermined system produces the general nonlinear system of PDEs obtained from
equations (A14) and (A15) through the transformation (14). The arbitrary function8 is there.
We need to impose a restriction on this system in the form (22) (Ṽ = 1) to give the CH. This
restriction is equivalent to the following algebraic equation for the function8:

ψa(0) = c(t) exp(a(8 + x)) (A26)

(c is an arbitrary function oft , which will be clarified later). Recall that the left-hand side of
this equation depends explicitly on the function8 due to the transformation (14).

It will become clear that the potentialu of equation (A19) is the solution of CH (3). To
show this, we have to express all other potentials of the system (A18) and (A19) in terms ofu.
To do so, one needs to consider the non-trivial terms of the expansions of equations (A18) and
(A19) in powers of the parametersεk, k = 0, 1, 2 (A13) and take into account equation (A26).
After some rather simple transformations one obtains

Ũ2 = a(1 + 28x) (A27)

W̃ = 1

2

(
ux + au− bt (t)

b(t)

)
(A28)

Ũ1 = −uxx
2

+ a2u

2
+ 1 +

bt

b
. (A29)

The functionb(t) which appears in these formulae is related to the functionc(t). In fact, let
us take the expansion of equation (A17) in powers of the parameterε1. In view of (A24) and
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(A26) one has

ψ(0) = c(t)√
b(t)

1√
8x

exp
(

1
2a(8 + x)

)
. (A30)

Note that the left-hand side of this equation does not depend on any arbitrary function oft .
This means thatc/

√
b = 1, in the right-hand side of this equation. Moreover, to obtain the

CH equation with constant potentials one needs to take the functionb(t) such that the function
(bt/b) would be a constant. We takeb = constant for simplicity. Finally, for the function9a

9a = ψeK−a8 (A31)

one obtains the system (23) and (24).
After this discussion, we obtain the CH equation (3), which can be obtained either as

the compatibility condition of the system (A18) and (A19) or from consideration of the non-
trivial terms in the expansions of equations (A18) and (A19) in powers of the parametersεk,
k = 0, 1, 2 (A13). Some of these non-trivial terms lead to equations (A27)–(A29). Other ones
allow us to construct equation (3).

The connection between the solutions of the deformed sinh–Gordon equations (4), (34)
and CH (3) is obtained from equations (A17), (A24) and (A26). Finally, it can be written as
(compare with (27))

ψ2
a18x = e(x+8)a+b(t) (A32)

(b(t) = constant from above) in view of the definitions (A16) and (A20) and of the Miura
transformation (31),

∂X(χ) = 2∂X ln(ψa1)− a lnX(ξ) = 1
4

(
χ2
X − χXX

)
T

u = 8t

8x

. (A33)

Note that equation (A32) has, in general, more than one different solution. This means
that any solution of the deformed sinh–Gordon equation is related to a family of solutions
of the CH equation. The number of solutions in this family depends on the solution of the
deformed sinh–Gordon equation, which produces this family. The problem of constructing
real solutions of CH should be solved for each family independently. One can say at least that
real solutions of equation (A32) give rise to real solutions of CH (3).

Now we turn to the soliton solutions of equation (34). TheN -soliton solution is represented
by equations (A1)–(A3) withη = 1 and the kernelR0 of the form

R0(ν, µ) = δ(ν − a +µ)
N∑
k=1

pkδ(ν − bk) (A34)

with pk and bk arbitrary real constants. We consider the one-soliton solution, when
equation (A34) has only one term (N = 1, b1 = b, p1 = p) and rewrite this equation in
the form

R0(ν, µ) = − 1
2π iδ(µ− a + ν) δ(ν − b)p. (A35)

To construct the solution of CH (3), we take equation (A26) and the∂̄-problem given by (A7)
(instead of (A1)) with the same kernelR0. Note that thē∂-technique allows us to construct
the solutions of CH related to the solutions of equation (34) without solving the differential
equation (A32). We should simply use the algebraic formula (A26) to define the function8

and formula (A20) to find the solution of CH.
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Equation (A7) with the kernel (A2), (A3) and (A35) can be easily integrated resulting in

ψa(λ) = 1

λ− a +
p

a − b − λψ(b)χ (A36)

where we have introduced the functionχ , which is related to8 by the formula

χ = exp

[
(2b − a)8 +

2b − a
b(b − a) t

]
. (A37)

The functionψ(b) can be defined from equation (A36) by substitutingλ = b in it,

ψ(b) = 1

(b − a)
1

(1 + (p/(2b − a))χ) . (A38)

Then equation (A26) for the functionχ is reduced to the following one:

ac(γ − 1)2(a − 2aγ − pχ)χ1/(2γ−1) eaη − pγ 2χ − a(2γ − 1)(γ − 1)2 = 0 (A39)

whereγ = b/a, β = 1/[a2γ (1− γ )], η = x + βt .
TheN -soliton solution of equation (34) can be considered without difficulties. In this case

equation (A26) is also an algebraic one of degreeP , P > 4 and has to be solved numerically.
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